Abstract

Temperature-dependent resistivity measurements were carried out on bamboo-shaped multiwalled carbon nanotubes (CNT) grown on cobalt-catalyst-deposited A1 2O 3/Ti substrates by a thermal chemical vapor deposition. The resistivity decreased with increasing growth temperature, and a reduced activation energy analysis showed that the CNT moved from the critical regime to the metallic regime with increasing growth temperature. The improved electrical conductivity with increasing growth temperature is attributed to the improved crystallinity and the increased diameters of the CNT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.