Abstract

Yttria-stabilized hafnia (YSH) films of 90 nm thickness have been produced using sputter-deposition by varying the growth temperature (T(s)) from room-temperature (RT) to 400 °C. The effect of T(s) on the structure, morphology, and thermal conductivity of YSH films has been investigated. Structural studies indicate that YSH films crystallize in the cubic phase. The lattice constant decreases from 5.15 to 5.10 Å with increasing T(s). The average grain size (L) increases with increasing T(s); L-T(s) relationship indicates the thermally activated process of the crystallization of YSH films. The analyses indicate a critical temperature to promote nanocrystalline, cubic YSH films is 300 °C, which is higher compare to that of pure monoclinic HfO(2) films. Compared to pure nanocrystalline hafnia, the addition of yttria lowers the effective thermal conductivity. The effect of grain size on thermal conductivity is also explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call