Abstract

The growth of ceria (CeO2) films by oxidation of evaporated Ce metal on Si(111) and on CaF2(111) epilayers on Si(111) is compared. By use of XPS, UPS, and LEED, it has been demonstrated that the application of a CaF2 buffer layer between the ceria and Si substrate prevents the formation of an amorphous oxidized Si layer at the interface and permits the growth of a well-defined epitaxial ceria layer of (111) surface orientation. The thermal stability of the CeO2/CaF2/Si(111) interface structure is limited by the solid-state reaction between CaF2 and ceria. This leads to gradual migration of fluorine into the oxide at elevated temperatures to give a solid-state solution of fluorine in the partially reduced oxide. An analysis of the composition observed after extensive annealing in a vacuum suggests that, with initial layers of CaF2 and CeO2 of similar thickness, the ultimate product may be CeOF. The onset of this solid-state reaction can, however, be significantly delayed by annealing under an oxygen atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.