Abstract
Fe-substituted superconducting thin BiSrCaCuO rods with nominal compositions of Bi2Sr2Ca1Cu2−x Fe x O8+δ (x = 0, 0.01, 0.03, 0.05, and 0.1) were fabricated using the laser floating zone technique at two different growth speeds, 15 mm h−1 and 30 mm h−1. The influences of growth speed and Fe substitution on the grain alignment in the rods were evaluated by means of x-ray pole figure studies. The obtained results showed that both applied growth speed and Fe substitution play a crucial role on grain alignment, which is strongly connected with the current-carrying capacity of the rods. It was found that the rods grown at 15 mm h−1 (G15) have stronger orientation than the rods grown at 30 mm h−1 (G30). However, in contrast to the G15 rods, an increased substitution rate improved the orientation of the G30 rods. Another important observation is that the increase on the substitution caused a decrease on the grain size of all the rods. The decrease of critical temperature values of the rods upon substitution was ascribed to both grain size effect and formation of a nonsuperconducting Fe-rich phase detected in scanning electron microscope/energy-dispersive x-ray analyses. The thermal conductivity values of the G15 and G30 rods were found to be in the range of 0.9–1.9 and 1.1–1.18 W m−1 K−1 at 150 K, respectively. The higher values of figure of merit (ZT), at all temperature ranges, were obtained from the highest substituted rods (x = 0.1) for both of the applied growth speeds. In addition, it was observed that the ZT of G30 rods are up to three times higher than that of G15 ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.