Abstract

Highly-texturized polycrystalline fibres of the Bi–Sr–Ca–Cu–O system have been grown by the laser floating zone technique at seven different pulling rates: (1.1, 2.2, 4.17, 8.3, 16.7, 33.3, 60.5) × 10−6 m s−1. The assessment of the cation segregation at the solid/liquid interface allowed us to calculate their equilibrium and effective distribution coefficients. The equilibrium distribution coefficients (k0,Bi = 0.55, k0,Sr = 0.97, k0,Ca = 1.67, k0,Cu = 1.10) were estimated using the Burton, Primm and Slichter (BPS) theory by taking into account the determined effective values. The effective distribution coefficients tend to unity as long as the pulling rate increases. The composition profiles along the initial transient region of the solidified fibres show a fast approach to the nominal composition as the pulling rate increases. The outstanding effect of the growth speed on superconducting phase type development is explained based on the solute trapping phenomena. The sequence of crystallization for superconducting phases (‘2212’ → ‘4413’ → ‘2201’) with pulling rate is a spontaneous effect of the system thermodynamics in order to balance the Bi trapping. This phase sequence corresponds to the smallest change of Bi chemical potential from the liquid phase to the solid phase. A diagram of free energy curves of the interdendritic superconducting phases illustrates the partitionless solidification phenomena at the highest growth speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call