Abstract

The growth of the brain of a human embryo changes over a long period of time in the body of the mother. So it is very difficult to observe and to understand that process. Therefore, embryologists have found realistic human organ models and animations to be necessary for their studies, but to create realistic human embryo brain models and to perform the animations requires an appropriate methodology. This paper presents a developing methodology based on the brain's functional representation and the convolutions of the surfaces. We employed this methodology to create a growth simulation of a human embryo's brain. The idea behind this technique is as follows. As a first step a 2D central skeleton is created from an artistic drawing and then a 3D skeleton is modeled by adding thickness information. In the next step, the skeletons representing the key-frame models are used to create an animation. At the end, the gap between the key-frame models is filled by suitable interpolation techniques and, finally, the animation is composed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call