Abstract

We provide a full set of growth rate coefficients to enable high-accuracy two- and three-dimensional simulations of dry thermal oxidation of 4H-silicon carbide. The available models are insufficient for the simulation of complex multi-dimensional structures, as they are unable to predict oxidation for arbitrary crystal directions because of the insufficient growth rate coefficients. By investigating time-dependent dry thermal oxidation kinetics, we obtain temperature-dependent growth rate coefficients for surfaces with different crystal orientations. We fit experimental data using an empirical relation to obtain the oxidation growth rate parameters. Time-dependent oxide thicknesses at various temperatures are taken from published experimental findings. We discuss the oxidation rate parameters in terms of surface orientation and oxidation temperature. Additionally, we fit the obtained temperature-dependent growth rate coefficients using the Arrhenius equation to obtain activation energies and pre-exponential factors for the four crystal orientations. The thereby obtained parameters are essential for enabling high-accuracy simulations of dry thermal oxidation and can be directly used to augment multi-dimensional process simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.