Abstract

We used an individual-based Monte Carlo simulation model to explore how changes in the mean and variance of growth rates of individuals in a larval fish cohort interact with size-dependent predation to affect the number and characteristics of individual survivors. Small changes in initial cohort mean growth rate can change survival over the first 60 d of life 10-to 30-fold. But when variance in growth rate among individuals is high, survival can be substantially higher than expected from the initial mean cohort growth rate. Selection for faster-growing individuals becomes stronger with increasing variance and increasing predation rate. In some cases, > 80% of the survivors may come from the upper 25% of the initial growth rate distribution, and the mean growth rate of the survivors may exceed twice the initial mean growth rate. When individual growth rates change from day to day rather than remaining constant, the contribution of atypical individuals is accentuated even further. Counterintuitively, most of the selection for faster-growing individuals happens only after the majority of mortality has already taken place. These results suggest that interactions between individual variability and selective mortality may have important cohort-level implications for survival in fishes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.