Abstract

BackgroundFusarium infection with concurrent production of deoxynivalenol (DON) causes an increasing safety concern with feed worldwide. This study was conducted to determine the effects of varying levels of DON in diets on growth performance, serum biochemical profile, jejunal morphology, and the differential expression of nutrients transporter genes in growing pigs.ResultsA total of twenty-four 60-day-old healthy growing pigs (initial body weight = 16.3 ± 1.5 kg SE) were individually housed and randomly assigned to receive one of four diets containing 0, 3, 6 or 12 mg DON/kg feed for 21 days. Differences were observed between control and the 12 mg/kg DON treatment group with regards to average daily gain (ADG), although the value for average daily feed intake (ADFI) in the 3 mg/kg DON treatment group was slightly higher than that in control (P<0.01). The relative liver weight in the 12 mg/kg DON treatment group was significantly greater than that in the control (P<0.01), but there were no significant differences in other organs. With regard to serum biochemistry, the values of blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate amino transferase (AST) in the 3 treatment groups were higher than those in the control, and the serum concentrations of L-valine, glycine, L-serine, and L-glutamine were significantly reduced in the 3 treatment groups, especially in the 12 mg/kg DON group (P<0.01). Serum total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) were markedly decreased after exposure to DON contaminated feeds (P<0.01). The villi height was markedly decreased and the lymphocyte cell numbers markedly increased in the 3 DON contaminated feeds (P<0.01). The mRNA expression levels of excitatory amino acid transporter-3 (EAAC-3), sodium-glucose transporter-1 (SGLT-1), dipeptide transporter-1 (PepT-1), cationic amino acid transporter-1 (CAT-1) and y+L-type amino acid transporter-1 (LAT-1) in control were slightly or markedly higher than those in the 3 DON treatment groups.ConclusionsThese results showed that feeds containing DON cause a wide range of effects in a dose-dependent manner. Such effects includes weight loss, live injury and oxidation stress, and malabsorption of nutrients as a result of selective regulation of nutrient transporter genes such as EAAC-3, SGLT-1, PepT-1, CAT-1 and LAT-1.

Highlights

  • Fusarium infection with concurrent production of deoxynivalenol (DON) causes an increasing safety concern with feed worldwide

  • The trichothecene deoxynivalenol (DON) is a secondary metabolite mainly produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, to which human and livestock can be exposed via food and feed [1]

  • There was no significant difference between control, 3 mg/kg DON group, and 6 mg/kg DON groups with regard to average daily gain (ADG), but this value in 12 mg/kg DON groups was significantly lower than those in the other groups (P < 0.05)

Read more

Summary

Introduction

Fusarium infection with concurrent production of deoxynivalenol (DON) causes an increasing safety concern with feed worldwide. This study was conducted to determine the effects of varying levels of DON in diets on growth performance, serum biochemical profile, jejunal morphology, and the differential expression of nutrients transporter genes in growing pigs. Barley and corn with concurrent production of DON and other trichothecene mycotoxins is an increasing food safety concern worldwide [1, 2]. DON is effectively absorbed in the upper gastrointestinal tract (GIT), i.e. stomach, duodenum and proximal jejunum [23] It is, hypothesized that DON will impair absorption of nutrients including amino acid, di/tripeptides, and glucose by reducing expression of genes for transporters of these nutrients especially in the upper GIT. There has been no systematic investigation to date of the DON-triggered effects in growth performance, serum parameters, jejunal morphology, and in the expression of nutrient transporter genes

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.