Abstract
Anthropogenic disturbances such as mining for coal have caused significant disturbance to the Appalachian forests of North America. Recovery of these disturbances is highly dependent on restoration methods that encourage natural succession. Unfortunately, current reclamation protocols have resulted in soil compaction and aggressive herbaceous groundcovers that impede the recovery of native trees. To overcome this, methods such as deep ripping and plow and disking were applied to a reclaimed mine land in Ohio, USA Plantings of pure American chestnut (Castanea dentata) and two seedling types (BC1F3 and BC2F3) bred for resistance to chestnut blight fungus (Cryphonectria parasitica) were assessed among different soil preparation treatments over five field seasons. Seedling mortality due to natural infection by chestnut blight was recorded and related to the disease resistance potential of the BC1F3 and BC2F3 seedlings. The growth and survival of chestnuts in plots that employed either ripping, plow disking, or the combination of the two methods were significantly greater than the control plots. After five seasons, differences existed among the soil treatments; plots that applied deep ripping had the highest survival and growth. When chestnut types were compared, pure American chestnut was the tallest. However, BC2F3 chestnut seedlings had the highest survival and lower disease incidence. Results suggest that employing deep ripping with backcrossed chestnut seedlings provides a method for establishing hardwood seedlings in soils impacted by surface mining. Planting methods that promote vigorous growth can be applied more broadly to other regions where anthropogenic disturbances create soil conditions that hinder seedling establishment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have