Abstract
Understanding the heterojunction of a lateral heterostructured transition metal dichalcogenide (hTMD) is important in order to take advantage of the combined optoelectronic properties of individual TMDs for various applications but, however, is hampered by mingled effects from lattice mismatch and substrate interaction. Here, we systematically investigated the strain occurring at lateral hTMDs consisting of molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) prepared by chemical vapor deposition. Comparison of homologous TMDs and hTMDs from controlled growth order revealed systematic change in photoluminescence behavior depending on substrate interaction and relative lattice mismatch. Near the heterojunction, a TMD with a larger lattice constant (a) exhibits photoluminescence (PL) red-shift, whereas a TMD with smaller a shows an opposite trend owing to lattice-induced strain. These effects are augmented in a subtractive or additive manner by tensile strain from the substrate interaction. Moreover, comparison of PLs revealed that the shell region grown from the core edges exhibits weak substrate interaction contrasted by that of a shell region independently grown on a shell. This study provides detailed understandings of the heterojunction at a lateral hTMD for various applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have