Abstract

Thick hexagonal GaN was grown on GaAs (111)A surfaces by metalorganic hydrogen chloride vapor phase epitaxy (MOHVPE) in the temperature range from 920°C to 1000°C. Both the surface morphology and the photoluminescence (PL) property of the grown layer were greatly improved with increase of the growth temperature up to 1000°C. However, the full-width at half maximum (FWHM) in the ω mode X-ray diffraction (XRD) of the GaN (0002) plane increased with increasing growth temperature above 960°C, due to the bending of the grown layer. The bending could be suppressed by growing a thicker layer, even at 1000°C. A mirror-like GaN layer with the FWHM value of 4.7 min was obtained by growing a 100-µm-thick layer at 1000°C, which indicates that the growth of a thick GaN layer on the GaAs (111)A surface is a promising method for the preparation of freestanding GaN substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.