Abstract
Spontaneous periodic surface structures, or ripples, are frequently observed after illumination of metals, semiconductors, and dielectrics by intense laser pulses. We develop a theory which predicts the observed spacing, polarization, and growth properties of these ripples. In this model, one or several Fourier components of a random surface disturbance scatter light from the incident beam very nearly along the surface. The interference of this diffracted optical wave with the incident beam then gives rise to optical interference fringes which can reinforce the initial disturbance. Sinusoidal corrugations on either metallic or molten surfaces seem to provide strong positive feedback for ripple growth, whereas sinusoidal gratings in temperature, electron-hole density, or dielectric constant seem much less well correlated with observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.