Abstract

During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the one-dimensional case show that the quality of reproduction decays exponentially with a characteristic time which is linear in the activation energy of surface diffusion. We argue that this lifetime of a pattern is optimized if the characteristic feature size of the pattern is larger than $(D/F{)}^{1/(d+2)}$, where $D$ is the surface diffusion constant, $F$ the deposition rate, and $d$ the surface dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.