Abstract

200-nm-thick N-polar AlN layers were grown on 6H-SiC(0001̄) substrates with 6-bilayer-high steps by molecular-beam epitaxy. During N-polar AlN growth, multinucleation growth occured easily, increasing the surface roughness of AlN. By reducing supersaturation (nucleation probability), the surface roughness was improved. The FWHMs of (0002) and (011̄2̄) ω-scan diffraction peaks of the AlN layer were 120 and 210 arcsec, respectively. The formation of stacking-mismatch boundaries (SMBs) was successfully suppressed by step-height control of the SiC substrate and the initial layer-by-layer growth. Most of the threading dislocations (TDs) were generated at the step edges of the SiC surfaces. The density of TDs in the AlN layers was 2×109 cm-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.