Abstract

Polycrystalline spinel layers were grown experimentally at the contacts between single-crystal corundum substrates and initially amorphous, then polycrystalline MgO thin films. The growth behavior of the spinel layers was monitored in situ using synchrotron X-ray diffraction. The change in the integrated intensity of the 111 spinel Bragg peak was correlated with the thickness of the layer as determined from ex situ TEM characterization of the run products. At \(900\,^{\circ }\hbox {C},\) a transition from linear growth, corresponding to interface reaction control, to parabolic growth, corresponding to diffusion control, occurred at a layer thickness of less than 10 nm. At 1,000 \(^{\circ }\hbox {C},\) growth was largely linear up to a layer thickness in excess of 300 nm. A thermodynamic model was applied to extract the kinetic parameters characterizing interface motion and long-range diffusion from this growth behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call