Abstract
The anisotropic functionalities of nanostructured silicates are highly attractive for various applications, whereas the silicates’ nanostructure heavily relies on the reactions in low temperature liquid conditions. Due to the stubborn [SiO4][Formula: see text] lattice foundation and most surfactants’ thermal instability, it is extremely difficult to manipulate the nanostructure and preserve high energy lattice facets in the high temperature solid state growth of silicates. In this report, the polymorphs transition of Li2FeSiO4 is found to open a precious window for adsorbate–crystal interactions. By adsorbing on the intermediates of phase transition, Ethlyene glycol effectively promotes the solid-state growth of Li2FeSiO4 nanoplates at high temperature, of which the high energy (020) facet becomes the dominant and exhibits high activity for fast charge transportation. The obtained Li2FeSiO4 nanoplates show greatly enhanced reactivity for Li[Formula: see text] ions’ extraction/insertion, and exhibit excellent capacities at high current density (1–10 C) as the cathode material for lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.