Abstract

In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call