Abstract
Direct heteroepitaxial growth of InP layers on GaAs (001) wafers has been performed by solid-source molecular beam epitaxy assisted by monoatomic hydrogen (H∗). The epitaxial growth has been carried out using a two-step method: for the initial stage of growth the temperature was as low as 200 °C and different doses of H∗ were used; after this, the growth proceeded without H∗ while the temperature was increased slowly with time. The incorporation of H∗ drastically increased the critical layer thickness observed by reflection high-energy electron diffraction; it also caused a slight increase in the luminescence at room temperature, while it also drastically changed the low-temperature luminescence related to the presence of stoichiometric defects. The samples were processed by rapid thermal annealing. The annealing improved the crystalline quality of the InP layers measured by high-resolution x-ray diffraction, but did not affect their luminescent behavior significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.