Abstract

GaN, AIGaN and InGaN films have been grown by molecular beam epitaxy (MBE) using RF plasma sources for the generation of active nitrogen. These films have been deposited homoepitaxially onto GaN/SiC substrates and hetero-epitaxially onto LiGaO 2 substrates. LiGaO 2 is an ordered and closely-lattice-matched orthorhombic variant of the wurtzite crystal structure of GaN. A low-temperature AIN buffer layer is necessary in order to nucleate GaN on LiGaO2. Thick GaN and AIGaN layers may then be grown once deposition is initiated. InGaN has been grown by MBE at mole fractions of up to 20% as a quantum well between GaN cladding layers. The indium containing structures were deposited onto GaN/SiC substrates to focus the development effort on the InGaN growth process rather than on heteroepitaxial nucleation. A modulated beam technique, with alternating short periods of (In, Ga)N and (Ga)N, was used to grow high-quality InGaN. The modulated beam limits the nucleation of metal droplets on the growth surface, which form due to thermodynamic limitations. A narrow PL dominated by band edge luminescence at 421 nm results from this growth technique. Growth of GaN at high temperatures is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.