Abstract

A successful method to epitaxy GaAsBi layer on (0 0 1) GaAs substrate is proposed. During growth, alternated trimethyl bismuth (TMBi) flows were used. These TMBi flashes were switched on for a short time. The growth was monitored in situ by laser reflectometry using a 632.8 nm beam. The reflectance signal is found to change significantly during both bismuth flashes and GaAs growth stages. High-resolution X-ray diffraction (HRXRD), secondary ion mass spectroscopy (SIMS) and photoreflectance spectroscopy (PR) have been used to characterize the obtained GaAsBi layer. HRXRD curve shows a diffraction peak that can be attributed to a GaAsBi epilayer. SIMS measurements of GaAsBi layer suggest that bismuth diffuses faster near the interface. The PR spectrum indicates the band-to-band transition in GaAsBi layer. The band gap energy was determined by adjusting the PR spectrum with a multilayer model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call