Abstract

Without any surfactant, rod-like and three kinds of flower-like ZnO microstructures were synthesized on indium-doped tin oxide (ITO) glass substrates through a simple and environmentally-benign hydrothermal process at 70 °C. The result indicated that rod-like ZnO would be transformed into flower-like ZnO microstructures with decreasing the concentration of sodium hydroxide. The ends, numbers and diameters of the petals of flower-like ZnO varied greatly by modulating the concentration of sodium hydroxide. The secondary nucleation and growth phenomena of ZnO were observed. Time-dependent experiments results indicate that the flower-like ZnO formed in a short period of time. The evolution of morphology and size of ZnO microstructures depended on the reaction time. The amounts and diameters of the petals of flower-like ZnO changed with increasing reaction time. On the basis of our observations and the mechanism proposed previously, the possible growth mechanism for flower-like ZnO was proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.