Abstract
Cuprous oxide (Cu2O) particles obtained by surfactant-assisted liquid-phase synthesis have cuboid shapes but the internal structures are difficult to be visualized by electron microscopy. Herein, we investigated the internal structures of numerous individual Cu2O particles with submicrometer dimensions by X-ray diffraction imaging (XDI) using X-ray free-electron laser (XFEL) pulses. The reconstructed two-dimensional electron density maps, which displayed inhomogeneous internal structures, were divided into five classes characterized by the positions and shapes of high and low electron density areas. Further analysis of the maps in each class by a manifold learning algorithm revealed that the internal structures of Cu2O particles varied in correlation with total electron density while retaining the characteristics within each class. On the basis of the analyses, we proposed a growth mechanism to yield the inhomogeneity in the internal structures of Cu2O particles in surfactant-mediated liquid-phase synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.