Abstract

In this paper, we report, for the first time, growth of high-quality single-crystalline 3C-SiC on silicon substrates using Hot Filament Chemical Vapor Deposition (HF-CVD). Rocking curve X-Ray diffraction (XRD) measurements revealed a full-width at half maximum (FWHM) as low as 333 arcsec for a 15 μm thick layer. Low tensile strain, below 0.1%, was measured using Raman spectroscopy. This quality was achieved with a carefully optimized process making use of the additional degrees of freedom the hot filaments create. For example, the hot filaments allow for precursor pre-cracking. Additionally, they allow a tuning of the vertical thermal gradient which creates an improved thermal field compared to classic Chemical Vapor Deposition techniques used for the deposition of this material today.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call