Abstract

AbstractLaser induced ablation studies have been carried out on formation of amorphous carbon and graphene on SiC thin films with their detailed characterization studies. Pulse laser ablation technique with process parameters such as 248 nm KrF excimer laser, frequency 10 Hz, 200 mJ of laser energy, and chamber pressure of 7 × 10−6 mbar has been used. Films were characterized in detail by grazing incidence X-ray diffraction, Fourier transform infrared, micro-Raman, X-ray reflectivity, Field emission scanning electron microscopic, transmission electron microscope, and Nano-indentation techniques and the results are reported. As deposited SiC film surface is rich in amorphous carbon and the same has been used as the nucleation site for further growth of graphene on SiC films. Film hardness increased from 29 GPa to 37 GPa for SiC film and graphene on SiC film (C-SiC), respectively. These films show bands due to surface phonon polariton mode in the range of 810–840 cm−1 that is a research concern today in nano-photonics area. Further these materials find applications in understanding the laser irradiation effects on SiC based nuclear fusion wall material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.