Abstract

Integrating graphene into device architectures requires interfacing graphene with dielectric materials. However, the dewetting and thermal instability of dielectric layers on top of graphene makes fabricating continuous graphene/dielectric interfaces challenging. Here, we show that yttria (Y(2)O(3))--a high-κ dielectric--can form a complete monolayer on platinum-supported graphene. The monolayer interacts weakly with graphene, but is stable to high temperatures. Scanning tunnelling microscopy reveals that the yttria layer exhibits a two-dimensional hexagonal lattice rotated by 30° relative to the hexagonal graphene lattice. X-ray photoemission spectroscopy measurements indicate a shift of the Fermi level in graphene on yttria deposition, which suggests that dielectric layers could be used for charge doping of metal-supported graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.