Abstract

In this paper we present the crystallization, photoluminescence (PL), and field-emission (FE) properties of ZnO nanostructures doped with In and Ga cationic substituents and grown by the vapor-phase transport process. During the growth, Zn/ZnOx was adsorbed on the surface of Ag nanograins and self-catalyzed to form ZnO nanoparticles. Hexagonal-faced nanobricks and nanorods were grown by increasing the ZnO vapor concentration. However, nanodisks rather than nanobricks were grown when In2O3 was doped. Furthermore, the nanodisks aggregated to form nanoballs when the synthesis was carried out at high In2O3 doping concentrations. In contrast, nanostructures with a sea-urchin-like morphology were grown when Ga2O3 was doped; individual nanorods with a screw-dislocation structure grew from the same root. We present the growth mechanisms for the ZnO, ZnO:In, and ZnO:Ga nanostructures. ZnO:Ga nanorods exhibited better PL intensity and FE properties than ZnO nanorods and ZnO:In nanoballs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.