Abstract

In order to clarify the possibility to form Si nanocones under the same gas sources (CH 4 and H 2) and deposition system (microwave plasma chemical vapor deposition (MPCVD)), a process were successfully developed to synthesize the well-aligned amorphous carbon-coated Si nanocones (a:C-SNCs), and their growth mechanism is proposed. This process includes depositing 10 nm Co-catalyst on Si wafer by physical vapor deposition (PVD) and then followed by H-plasma pretreatment to form Co nanoparticles. The pretreated specimens were then used to synthesize various nanostructures under a higher negative substrate bias. The deposited nanostructures and their compositions were characterized by SEM, HRTEM, ED, EDS and Raman spectroscopy. The results indicate that the most important parameters for forming a:C-SNCs include a lower CH 4 / H 2 ratio, a higher negative substrate bias and assistance of the carbon-soluble nano-sized catalysts, such as Co. Under a higher enough negative substrate bias (≥ 240 V), the etching rates of the catalyst particles and the substrate by the positive species are greater than the carbon deposition rate; a:C-SNCs can be formed. We propose that the cone shape of the nanostructures is essentially resulted from a progressive reduction in catalyst particle sizes under the conditions of higher etching rate than deposition rate on the catalyst surfaces, which may be partially due to a reduction in the Co melting temperature by the presence of carbon in the Co matrix. This mechanism is supported by the facts that a:C-SNCs find no catalysts or very small catalysts on the tips; the catalyst sizes show no significant reduction in sizes after the same a:C-SNCs deposition conditions except no presence of carbon; the diameter of the cone base has no significant differences in size as the original catalyst size after H-plasma pretreatment. Our mechanism gives the guideline to form the nanocone structures by MPCVD with same gas sources (CH 4 and H 2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call