Abstract
Abstract Thin films of Ni-Zn ferrite grown on MgO(111) single crystal substrate were prepared using radiofrequency magnetron sputtering, with a target of nominal composition Ni0.5Zn0.5Fe2O4. Subsequently, x-ray diffraction (XRD) was performed, which revealed characteristic reflections of a Ni-Zn ferrite structure, confirming the unique formation of the ferrite. X-ray photoelectron spectroscopy (XPS) revealed the presence of metal ions in their appropriate valence states within the crystalline structure of the Ni-Zn ferrite. The variation in binding energy observed in the thin film is attributed to changes in the environment of Fe3+ and Zn2+ or Ni2+ ions, resulting from the non-equilibrium distribution of cations in tetrahedral and octahedral sites. The saturation magnetization and the coercivity field were 7.05 μ B / cell and 513 ± 32 Oe, respectively. In addition, ferromagnetic resonance studies were made using broad-band FMR spectroscopy based on a coplanar waveguide (CPW) spectrometer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have