Abstract
Recent studies have shown that nitric oxide (NO) donors can trigger apoptosis of neurons, and growth factors such as insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) can protect against NO-induced neuronal cell death. The purpose of this study was to elucidate the possible mechanisms of NO-mediated neuronal apoptosis and the neuroprotective action of these growth factors. Both IGF-1 and bFGF prevented apoptosis induced by NO donors, sodium nitroprusside (SNP) or 3-morpholinosydnonimin (SIN-1) in hippocampal neuronal cultures. Incubation of neurons with SNP induced caspase-3-like activation following downregulation of Bcl-2 and upregulation of Bax protein levels in cultured neurons. Treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by SNP. In addition, treatment of neurons with an inhibitor of caspase-3, Ac-DEVD-CHO, together with SNP did not affect the changes in the protein levels, although it inhibited NO-induced cell death. Pretreatment of cultures with either IGF-1 or bFGF prior to NO exposure inhibited caspase-3-like activation together with the changes in Bcl-2 and Bax protein levels. These results suggest that the changes in Bcl-2 and Bax protein levels followed by caspase-3-like activation are a component in the cascade of NO-induced neuronal apoptosis, and that the neuroprotective actions of IGF-1 and bFGF might be due to inhibition of the changes in the protein levels of the Bcl-2 family.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have