Abstract

AbstractAbstract 3156T cell acute lymphoblastic leukemia (T-ALL) is one of the most common childhood cancers associated with mutations in NOTCH1. The Growth factor independent-1 (Gfi1) transcriptional repressor gene was originally discovered as a common target of Moloney murine leukemia virus (MMLV) proviral insertion in murine T-ALL. In fact, the Gfi1 locus is the most frequently activated gene in MMLV-induced T cell leukemia. Therefore, we investigated whether the most commonly activated gene in MMLV-induced murine T-ALL, Gfi1, could collaborate with the most commonly activated gene in human T-ALL, NOTCH1. Here, we show that GFI1 expression is associated with Notch signaling in human T-ALL (p'0.0003). Functionally, Gfi1 collaborates with Notch-induced murine T-ALL by accelerating an already rapid disease model (p=0.03) without altering the lymphoblastic nature of the disease. Furthermore, inducible deletion of Gfi1 is counter-selected in both Notch-driven retroviral and transgenic mouse models of T-ALL; whereas, constitutive absence of Gfi1 completely prevents transgenic Notch-induced T-ALL (p≤0.04). However, T-ALL tumors can form in Gfi1-/- animals using either ENU-mutagenesis or MMLV-infection, yet tumor formation is delayed (p≤0.02, p≤0.03 respectively). This suggests that Gfi1 deletion does not prevent the formation of the T-ALL initiating cell and that Gfi1 might be absolutely required for Notch-induced T-ALL. Most striking is that Gfi1 is required for T-ALL maintenance in vitro and in vivo. Using three separate Tal1-initiated murine T-ALL cell lines, the overexpression of the Gfi1 dominant-negative, Gfi1N382S, was quickly and completely counter-selected. As Gfi1 has previously been found to regulate pro-apoptotic genes in T cells, we attempted to rescue the above loss of function phenotype by overexpressing the anti-apoptotic factor Bcl2. Notably, counter-selection of Gfi1N382 is not observed or is significantly delayed in all three cell lines. In vivo, inducible deletion of Gfi1 leads to both mutagen- or Notch-induced tumor regression as measured by ultrasound. In fact, levels of Gfi1 expression directly correlate to tumor regression and disease free survival of T-ALL. Finally, targeting Gfi1 enhances the efficacy of radiation therapy and bone marrow transplantation. Deletion of Gfi1 sensitizes T-ALL tumors and T cells to p53-dependent apoptosis after exposure to DNA-damaging agents such as radiation, Etoposide or Daunorubicin by de-repression of the pro-apoptotic Gfi1 target gene Bax. These data extend the role of Gfi1 to human T-ALL and suggest that T-ALL is dependent upon Gfi1 to repress pro-apoptotic genes for tumor survival, ultimately highlighting a new therapeutic target in the fight against lymphoid malignancies. Disclosures:No relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call