Abstract

During the last decade, aberrant DNA methylation has been identified as a hallmark of human cancer and several studies have highlighted the potential of DNA methylation as a clinically or diagnostically relevant biomarker. In comparison to their normal healthy counterparts, cancer cells generally display DNA hypermethylation at specific CpG islands, but the actual mechanism that drives this so-called CpG island methylator phenotype (CIMP) remains poorly understood. To profile the DNA methylation landscape of human T-cell acute lymphoblastic leukemia (T-ALL), we analyzed 109 T-ALLs together with 10 stages of normal T cell development, which are considered the normal human counterparts of this disease, by 850 EPIC arrays. Here, we show that CpG islands are hypermethylated in all human T- ALLs compared to their normal counterparts. We designed a DNA methylation signature that can distinguish two types of T-ALL, with low or high levels of CpG island hypermethylation. This profile is dominated by CpGs in promoters of PRC2 target genes. T-ALLs with high levels of CpG island hypermethylation show low levels of H3K27me3 and vice versa, resulting in gene repression in both subtypes of T-ALL by different mechanisms. Furthermore, we found that aberrant CpG island hypermethylation shows a strong correlation with the epigenetic age of the leukemic T cells. By investigating the DNA methylation profile of two distinct mouse T-ALL models, the Lck-Cre Ptenfl/fland the CD2-Lmo2 transgenic mouse model, by Reduced Representation Bisulfite Sequencing, we could indeed recapitulate the DNA methylation features of the two human T-ALL subtypes in mice (Fig.1). The aggressive, fast-transforming Ptenfl/flmouse model displays low levels of CpG island hypermethylation, which correlated with human T-ALLs that have a shorter proliferative history and a worse prognosis. In contrast, murine CD2-Lmo2 T-ALLs have a longer disease latency and display a CpG island hypermethylation phenotype that is similar to human T-ALLs with a longer proliferative history. In CD2-Lmo2 mice, a pre-leukemic phase is present with self-renewing thymocytes. We elucidate that the CpG island methylation signature is gradually established in aging pre-leukemic thymocytes of 8, 16 and 24 weeks old CD2-Lmo2 mice (Fig.1). Of note, this hypermethylation phenotype is completely absent in age matched Lck-Cre Ptenfl/flmice that did not yet develop leukemia, suggesting that the proliferative history is responsible for aberrant CpG island DNA methylation observed in human T-ALL. Notably, this provides the first evidence that a pre-leukemic phase might be present in a large subset of human T-ALLs, and that epigenetic aberrations, either in the DNA methylation or histone methylation machinery are one of the first detectable alterations during T-ALL development. Finally, using patient derived xenografts (PDX), we show that DNA hypomethylation by the FDA-approved hypomethylating agent Decitabine is very effective in treating T-ALL. Gene expression profiling revealed that the anti-leukemic effect is exerted by down-regulation of the oncogenic MYC pathway. However, by profiling these PDX T-ALLs by EPIC arrays, we unexpectedly uncover that the age-related CpG island hypermethylation signature is completely resistant to Decitabine treatment. Altogether, our work demonstrates that DNA methylation reflects the epigenetic history of leukemic T cells and suggests that methylation-based subtypes of human T-ALL have followed a different trajectory towards T-cell transformation, possibly mediated by differences in the self-renewing capacity of the putative T-ALL cell-of-origin. Given that the concept of preleukemic thymocytes has only been reported in T-ALL mouse models so far, we here provide, for the first time, conceptual evidence that a pre-leukemic phase might also be involved in the pathogenesis of the human disease. Disclosures No relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call