Abstract

The growth and characterization of CePtIn4, stabilized by 10% Zn substitution for In, is reported. The new material is orthorhombic, space group Cmcm (No. 63), with lattice parameters a = 4.51751(4) {\AA}, b = 16.7570(2) {\AA}, and c = 7.36682(8) {\AA}, and the refined crystal composition has 10% of Zn substituted for In, i.e. the crystals are CePt(In3.6Zn0.1)4. Crystals were grown using a self-flux method: only growths containing Zn yielded CePtIn4 crystals, while Ce3Pt4In13 crystals formed when Zn was not present. Anisotropic temperature-dependent magnetic susceptibilities for single crystals show that Zn-stabilized CePtIn4 orders magnetically at ~1.9 K. High-temperature Curie-Weiss fits indicate an effective moment of ~2.30 muB/ Ce and a directionally averaged Weiss-temperature of approximately - 9 K. Specific heat data shows a peak consistent with the ordering temperature seen in the magnetic susceptibility data. Zn-stabilized CePtIn4 is metallic and displays no superconducting transition down to 0.14 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call