Abstract
AbstractHydroelectric dam operation can alter discharge and temperature patterns, impacting fish populations downstream. Previous investigations into the effects of river regulation on fish have focused on a single species within a river, yet different results among studies suggest the potential for species‐specific impacts. Here, we compare the impacts of two different hydropeaking regimes relative to a naturally flowing river on three ecologically important members of the forage fish community: longnose dace (Rhinichthys cataractae), slimy sculpin (Cottus cognatus) and trout‐perch (Percopsis omiscomaycus). Annual growth, estimated from otolith back‐calculations, was higher for each of the species in the regulated river relative to the naturally flowing river but did not differ between hydropeaking regimes. Condition was assessed using weight–length relationships and differed between rivers for each species, and between hydropeaking regimes for longnose dace and slimy sculpin. Survival of longnose dace and slimy sculpin was lower in the regulated river relative to the naturally flowing river, but comparable between rivers for trout‐perch. Annual growth was significantly related to mean summer discharge in the regulated river and to mean summer water temperature in the naturally flowing river for each species, and significantly different slopes among species indicate species‐specific responses to discharge and temperature alterations. This study demonstrates different biological responses among fish species within rivers to regulation in general, as well as to specific hydropeaking regimes. Future studies should focus on multiple species and multiple indicators of fish health to more fully characterize the impacts of river regulation on downstream fish communities. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.