Abstract

BackgroundShort beak and dwarfism syndrome (SBDS) was caused by novel goose parvovirus (NGPV)--a variant of goose parvovirus (GPV). Ducks infected with NGPV shows clinical signs including growth retardation and protrusion of the tongue from an atrophied beak. SBDS outbreak was first reported at the northern coastal provinces of China during 2015 and it was again reported in Sichuan, an inland province of China in 2016. The disease caused a huge economic loss in Chinese duck feeding industry.ResultsThe SD15 strain of NGPV was isolated from liver and intestinal tract tissue samples of infected ducks. Real-time quantitative PCR (qPCR) was used to estimate viral load in embryonated eggs and cells infected with adapted virus. The data showed that duck embryo fibroblasts (DEFs) were permissive to NGPV, while goose embryo fibroblasts (GEFs) cells were not, and the copy numbers of SD15 in the allantoic fluid of infected eggs remained at 105.0–106.5 copies/ml. The adaption procession of the virus was determined via qPCR, and viral proliferation was detected through indirect fluorescent antibody assay (IFA) in DEFs. It was further determined that viral copy numbers peaked at 96 h post-inoculation (hpi), which is the best time to harvest the virus in DEFs. Cytotoxic effects and cell death were observed at 72 hpi in SD15 infected DEFs, yet SD15 did not induce apoptosis.ConclusionsThe growth characteristics of SD15 strain of NGPV determined would be beneficial for further molecular characterization of these viruses and develop potential vaccines if required.

Highlights

  • Short beak and dwarfism syndrome (SBDS) was caused by novel goose parvovirus (NGPV)--a variant of goose parvovirus (GPV)

  • Virus isolation and adaption NGPV was continually blind-passaged in duck embryos, duck embryo fibroblasts (DEFs), and Goose embryo fibroblast (GEF)

  • After blindly passaged four passages, 60% of duck embryos died at 60 hpi with systemic hemorrhaging (Fig. 2a), and the viral copy numbers of NGPV-infected duck embryos were stable at 105.0–106.5 copies/ml from the first to twelfth passage (Fig. 2b)

Read more

Summary

Introduction

Short beak and dwarfism syndrome (SBDS) was caused by novel goose parvovirus (NGPV)--a variant of goose parvovirus (GPV). Short beak and dwarfism syndrome (SBDS) was first reported in Mule ducks in France during 1971–1972 [1], in Taiwan during 1989–1990 [2]. The etiological agent of SBDS is a novel goose parvovirus (NGPV), which shared the highest homology with goose parvovirus (GPV) and was regarded as a variant of GPV [1, 4]. In the family Parvoviridae, viruses contain a linear, single-stranded DNA genome of approximately 5 kb in length [10]. The full-length genome contains two open reading frames (ORFs): the left ORF codes for the non-structural proteins NS1 and NS2 [11], and the right ORF codes for the structural proteins VP1, VP2 and VP3 [12]. There are two inverted terminal repeats (ITRs) at both ends of the genome [12, 13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call