Abstract

Despite broad interest in colloidal lead halide perovskite nanocrystals (LHP NCs), their intrinsic fast growth has prevented controlled synthesis of small, monodisperse crystals and insights into the reaction mechanism. Recently, a much slower synthesis of LHP NCs with extreme size control has been reported, based on diluted TOPO/PbBr2 precursors and a diisooctylphosphinate capping ligand. We report new insights into the nucleation, growth, and self-assembly in this reaction, obtained by in situ synchrotron-based small-angle X-ray scattering and optical absorption spectroscopy. We show that dispersed 3 nm Cs[PbBr3] agglomerates are the key intermediate species: first, they slowly nucleate into crystals, and then they release Cs[PbBr3] monomers for further growth of the crystals. We show the merits of a low Cs[PbBr3] monomer concentration for the reaction based on oleate ligands. We also examine the spontaneous superlattice formation mechanism occurring when the growing nanocrystals in the solvent reach a critical size of 11.6 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.