Abstract

Mg doping into In-polar InN layers for different Mg fluxes is performed on GaN templates by molecular beam epitaxy, and their electrical and optical properties are investigated. Mg concentration is linearly proportional to Mg-beam flux, indicating that the Mg-sticking coefficient is almost unity. With Mg doping, electron concentration decreases by the effect of carrier compensation, but it begins to increase with further increasing Mg flux because of Mg-related donorlike-defects formation. For the partially carrier-compensated Mg-doped InN, two photoluminescence peaks are observed; one is originated from free-to-acceptor emission with an acceptor activation energy of about 61meV and the other is similar to the conventional band-to-band emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.