Abstract

Molecular layer deposition (MLD) of the hafnium alkoxide polymer known as "hafnicone" was grown using sequential exposures of tetrakis(dimethylamido) hafnium (TDMAH) and ethylene glycol (EG) as the reactants. In situ quartz crystal microbalance (QCM) experiments demonstrated self-limiting reactions and linear growth versus the number of TDMAH/EG reaction cycles. Ex situ X-ray reflectivity (XRR) analysis confirmed linear growth and measured the density of the hafnicone films. The hafnicone growth rates were temperature-dependent and decreased from 1.2 Å per cycle at 105 °C to 0.4 Å per cycle at 205 °C. The measured density was ∼3.0 g/cm(3) for the hafnicone films at all temperatures. Transmission electron microscopy images revealed very uniform and conformal hafnicone films. The XRR studies also showed that the hafnicone films were very stable with time. Nanoindentation measurements determined that the elastic modulus and hardness of the hafnicone films were 47 ± 2 and 2.6 ± 0.2 GPa, respectively. HfO2/hafnicone nanolaminate films also were fabricated using HfO2 atomic layer deposition (ALD) and hafnicone MLD at 145 °C. The in situ QCM measurements revealed that HfO2 ALD nucleation on the hafnicone MLD surface required at least 18 TDMAH/H2O cycles. Hafnicone alloys were also fabricated by combining HfO2 ALD and hafnicone MLD at 145 °C. The composition of the hafnicone alloy was varied by adjusting the relative number of TDMAH/H2O ALD cycles and TDMAH/EG MLD cycles in the reaction sequence. The electron density changed continuously from 8.2 × 10(23) e(-)/cm(3) for pure hafnicone MLD films to 2.4 × 10(24) e(-)/cm(3) for pure HfO2 ALD films. These hafnicone films and the HfO2/hafnicone nanolaminates and alloys may be useful for flexible thin-film devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call