Abstract
AbstractQuinoa (Chenopodium quinoa Willd.), traditionally called the mother of grains, has the potential to grow under high temperatures and drought, tolerating levels regarded as stresses in other crop species. A pot experiment was conducted in a climate chamber to investigate the potential of quinoa tolerance to increasing drought and temperature. Quinoa plants were subjected to three irrigation and two temperature regimes. At low temperature, the day/night climate chamber temperature was maintained at 18/8 °C and 25/20 °C for high temperature throughout the treatment period. The irrigation treatments were full irrigation (FI), deficit irrigation (DI) and alternate root‐zone drying (ARD). FI plants were irrigated daily to the level of the pot's water‐holding capacity. In DI and ARD, 70 % water of FI was applied either to the whole pot or to one side of the pot alternating, respectively. The results indicated that plant height and shoot dry weight significantly decreased by ARD and DI compared to FI treatment both at low and at high temperatures. However, plants in ARD treatment showed significantly higher plant height and shoot dry weight compared to DI especially at higher temperature, which is linked to increased xylem ion content. Higher quinoa plant growth in ARD was associated with increase in water‐use efficiency (WUEi) due to higher abscisic acid concentration and higher nutrient contents compared to DI. From results, it can be concluded that quinoa plant growth is favoured by high temperature (25/20 °C) and ARD is an effective irrigation strategy to increase WUE in drought prone areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.