Abstract

Ultraviolet-B (UV-B) radiation and nitrogen are expected to increase simultaneously with future changes in global climate. In this study, growth and photosynthetic responses of Picea asperata seedlings to enhanced UV-B and to nitrogen supply were studied. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 kJ m-2 d-1; enhanced UV-B, 14.33 kJ m-2 d-1) and two nitrogen levels (0; 20 g N m-2) to determine whether nitrogen can alleviate the negative impacts of enhanced UV-B on seedling growth and photosynthesis. Enhanced UV-B significantly inhibited plant growth and impaired net photosynthetic rate, stomatal conductance, transpiration rate, the light-saturated assimilation rate, assimilation capacity, light compensation point, dark respiration rate, apparent quantum yield, photosynthetic pigments and maximum quantum yield of photosynthesis of P. asperata seedlings, whereas minimal fluorescence and intercellular CO2 concentration increased by enhanced UV-B. On the other hand, nitrogen supply improved the photosynthetic performance and plant growth, but only under ambient UV-B. In fact, nitrogen supply could not alleviate the photosynthetic impairments in P. asperata seedlings exposed to enhanced UV-B radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.