Abstract

Near-isogenic lines of maize varying in their genes for flavonoid biosynthesis were utilized to examine the effects of foliar flavonoids and nutrient deficiency on maximum net photosynthetic rate (P N) and chlorophyll (Chl) fluorescence (Fv/Fm) in response to ultraviolet-B (UV-B) radiation. Plants with deficient (30 to 70 % lower N, K, Mn, Fe, and Zn) and sufficient nutrients were exposed to four irradiation regimes: (1) no UV-B with solar photosynthetically active radiation (PAR), (2) two day shift to ambient artificial UV-B, 8.2-9.5 kJ m-2 d-1 (21-25 mmol m-2 d-1); (3) continuous ambient artificial UV-B; (4) continuous solar UV-B in Hawaii 12-18 kJ m-2 d-1 (32-47 mmol m-2 d-1). The natural ratio of UVB: PAR (0.25-0.40) was maintained in the UV-B treatments. In the adequately fertilized plants, lines b and lc had higher contents of flavonoids and anthocyanins than did lines hi27 and dta. UV-B induced the accumulation of foliar flavonoids in lines hi27 and b, but not in the low flavonoid line dta or in the high flavonoid line lc. In plants grown on deficient relative to adequate nutrients, flavonoid and anthocyanin contents decreased by 30-40 and 40-50 %, respectively, and Chl a and Chl b contents decreased by 30 and 70 %, respectively. The UV-B treatments did not significantly affect P N and Fv/Fm in plants grown on sufficient nutrients, except in the low flavonoid lines dta and hi27 in which P N and Fv/Fm decreased by ∼15 %. P N, Fv/Fm, and stomatal conductance decreased markedly (20-30 %) in all lines exposed to UV-B when grown on low nutrients. The decrease in Fv/Fm was 10 % less in higher flavonoid lines b and lc. The photosynthetic apparatus of maize readily tolerated ambient UV-B in the tropics when plants were adequately fertilized. In contrast, ambient UV-B combined with nutrient deficiency significantly reduced photosynthesis in this C4 plant. Nutrient deficiency increased the susceptibility of maize to UV-B-induced photoinhibition in part by decreasing the contents of photoprotective compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call