Abstract

Dittrichia graveolens is a rapidly spreading invasive plant in California. While populations are observed primarily in disturbed areas, there is concern it may expand into adjacent undisturbed areas, particularly grasslands and riparian corridors. In a field experiment conducted in two successive years, we compared plant growth and phenological development of fall, winter, and spring sown seeds. Plants establish equally well in disturbed upland sites in both above and below average precipitation years but the absence of late spring rainfall negatively affected total plant biomass. In a greenhouse experiment, we compared growth in four light environments (100, 50, 27 and 9 % available light). Total plant growth decreased exponentially with decreasing light. This suggests that D. graveolens is not competitive in low light environments, such as woodlands and riparian forests. All plants flowered in early- to mid-September, coinciding with flowering in field grown plants, suggesting that photoperiod is the primary signal for reproductive growth. Using a minirhizotron system, we measured root growth over time in D. graveolens and three common California annual grassland species, two non-natives, Centaurea solstitialis and Bromus hordeaceus, and the native forb Holocarpha virgata. Root growth of D. graveolens began later in the season than the other species, reaching depths >1 m by late May. Roots of C. solstitialis and H. virgata reached >1 m earlier in the season. The temporal difference in root growth suggests that D. graveolens may be less competitive for soil moisture with other early season annuals than other deep-rooted broadleaf species found in grasslands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.