Abstract

Flower-like zinc oxide (ZnO) nanostructures with hexagonal crown were synthesized on a Si substrate by direct thermal evaporation of zinc power at a low temperature of 600 °C and atmospheric pressure. Field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence were applied to study the structural characteristics and optical properties of the product. The result indicated that the flower-like product with many slender branches and hexagonal crowns at the ends were single-crystalline wurtzite structures and were preferentially oriented in the <001> direction. The photoluminescence spectrum demonstrated a strong UV emission band at about 386 nm and a green emission band at 516 nm. The field emission of the product showed a turn-on field of 3.0 V/µm at a current density of 0.1 μA/cm 2, while the emission current density reached about 1 mA/cm 2 at an applied field of 5.9 V/μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call