Abstract
Prolonged exposure to weak microwave fields (750–1000 MHz, 0.5 W) at 25°C induces a heat-shock response in transgenic C. elegans strains carrying hsp16 reporter genes [1]. A comparable response to heat alone requires a substantially higher temperature of 28°C, suggesting that microwave heating of worms or of the system as a whole might provide a sufficient explanation, although this can be ruled out by indirect arguments [1]. Here we investigate two further biological consequences of prolonged microwave exposure at 25°C in synchronised cultures of wild-type worm larvae, namely alterations in (i) growth rate (GR) and (ii) the proportion of worms later maturing into egg-bearing adults (MP). Both of these parameters are significantly increased following microwave exposure (GR by 8–11%, and MP by 28–40%), whereas both are significantly decreased (GR by 10% and MP almost abolished) after mild heat treatment at 28°C for the same period. It follows that the biological consequences of microwave exposure are opposite to, and therefore incompatible with, those attributable to mild heating. This evidence does not in itself necessitate a non-thermal mechanism, but does eliminate explanations that invoke the bulk heating of tissues by microwaves. This latter, however, remains the sole basis for current regulations governing microwave exposure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have