Abstract

The combination of microalga-based biodiesel production and wastewater treatment is a promising approach to solve problems related to the energy crisis as well as eutrophication in bodies of water. A freshwater microalga, Chlorella ellipsoidea YJ1, with a high capacity for biomass production and lipid accumulation in secondary effluent was isolated. C. ellipsoidea YJ1 could achieve a biomass of 425 mg L −1 (dry weight) in domestic secondary effluent treated with activated sludge technology; and the lipid content per unit of algal biomass was as high as 43% (w/w) in this condition. The lipid growth rate of C. ellipsoidea YJ1 in domestic secondary effluents could attain 11.4 mg/L. Furthermore, after the cultivation of C. ellipsoidea YJ1, the removal efficiencies of nitrogen and phosphorus from the secondary effluent studied in this paper were more than 99% and 90%, respectively. Logistic and Monod models were used successfully to simulate the growth of C. ellipsoidea YJ1, and its maximum biomass and maximum population growth rate under different initial concentrations of nitrogen and phosphorus could be simulated and predicted using the models. .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call