Abstract

Two studies were conducted in which 'Waldmann's Green' lettuce (Lactuca sativa L.) was grown hydroponically from seed to harvest in a large (20-m2), atmospherically closed growth chamber for the National Aeronautics and Space Administration's controlled ecological life support system (CELSS) program. The first study used metal-halide (MH) lamps [280 micromoles m-2 s-1 photosynthetic photon flux (PPF)], whereas the second used high-pressure sodium (HPS) lamps (293 micromoles m-2 s-1). Both studies used a 16-hour photoperiod, a constant air temperature (22 to 23C), and 1000 micromoles mol-1 CO2 during the light period. In each study, canopy photosynthesis and evapotranspiration (ET) rates were highly correlated to canopy cover, with absolute rates peaking at harvest (28 days after planting ) at 17 micromoles CO2/m2 per sec and 4 liters m-2 day-1, respectively. When normalized for actual canopy cover, photosynthesis and ET rates per unit canopy area decreased with age (between 15 and 28 days after planting). Canopy cover increased earlier during the study with HPS lamps, and final shoot yields averaged 183 g fresh mass (FM)/plant 8.8 g dry mass (DM)/plant. Shoot yields in the first study with MH lamps averaged 129 g FM/plant and 6.8 g DM/plant. Analysis of leaf tissue showed that ash levels from both studies averaged 22% and K levels ranged from 15% to 17% of tissue DM. Results suggest that lettuce should be easily adaptable to a CELSS with moderate lighting and that plant spacing or transplant schemes are needed to maximize canopy light interception and sustained efficient CO2 removal and water production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.