Abstract

Growth, fabrication, and the electrical and optical characterization of ultraviolet light emitting diodes and their components, including Al x Ga 1− x N films, quantum wells (QWs), and ohmic contacts, and the problems encountered in the process integration of these components have been investigated. Ni/Au ohmic contacts with specific contact resistivities of 2.2 × 10 −4 and 2.0 × 10 −2 Ω cm 2 were achieved on annealed, Mg-doped ([Mg] ∼ 5 × 10 19 cm −3), p-type GaN layers that had been cleaned in HCl at 85 °C and on the backside of the SiC substrates after annealing in nitrogen, respectively. The emission intensity of the diodes increased with an increase in the number of Al 0.06Ga 0.94N/Al 0.10Ga 0.90N QWs and with the use of Si-doped n-type barrier layers. The highest intensities of the principle emission at 353 nm were measured at all values of the injection current in the device with a p-type carrier-blocking layer at the top of the QWs; this device also exhibited the highest values of light output power. Growth of an n-type carrier-blocking layer at the bottom of the QWs had an adverse effect on their characteristics. A broad peak centered at ∼540 nm exhibited yellow luminescence and was present in the spectra acquired from all the devices. This peak is attributed to absorption of the ultraviolet emission by and re-emission from the p-GaN and/or to the luminescence from the AlGaN within QWs by current injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.