Abstract

Bioelectrochemical systems couple electricity demand/supply to the metabolic redox reactions of microorganisms. Generally, electrodes act not only as electron acceptors/donors, but also as physical support for an electroactive biofilm. The microorganism-electrode interface can be modified by changing the chemical and/or topographical features of the electrode surface. Thus far, studies have reported conflicting results on the impact of the electrode surface roughness on the growth and current production of biofilms. Here, the surface roughness of the glassy carbon electrodes was successfully modified at the sub-microscale using micro electrodischarge machining, while preserving the surface chemistry of the parent glassy carbon. All microbial electrodes showed similar startup time, maximum current density, charge transport ability across the biofilm and biomass production. Interestingly, an increase in the average surface cavity depth was observed for the biofilm top layer as a function of the electrode surface roughness (from 7 μm to 16 μm for a surface roughness of 5 nm to 682 nm, respectively). These results indicated that the surface roughness at a sub-microscale does not significantly impact the attachment or current production of mixed culture anodic biofilms on glassy carbon. Likely earlier observations were associated with changes in surface chemistry, rather than surface topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.