Abstract
Using a novel growth technique called reactive bias target ion beam deposition, the authors have prepared highly oriented VO2 thin films on Al2O3 (0001) substrates at various growth temperatures ranging from 250to550°C. The influence of the growth parameters on the microstructure and transport properties of VO2 thin films was systematically investigated. A change in electrical conductivity of 103 was measured at 341K associated with the well known metal-insulator transition (MIT). It was observed that the MIT temperature can be tuned to higher temperatures by mixing VO2 and other vanadium oxide phases. In addition, a current/electric-field induced MIT was observed at room temperature with a drop in electrical conductivity by a factor of 8. The current densities required to induce the MIT in VO2 are about 3×104A∕cm2. The switching time of the MIT, as measured by voltage pulsed measurements, was determined to be no more than 10ns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.