Abstract

Organic nanoparticles with controlled properties are advantageous for diversified biomedical and pharmacological applications. Cinnamon nanoparticles (CNPs) being bioactive and nontoxic can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using pulse laser ablation in liquid (PLAL) technique and characterized these NPs. A pure cinnamon target immersed in liquid ethanol (5 mL) was ablated using Q-switched Nd:YAG pulse laser of varying energy (30–180 mJ). Laser energy dependent structure, morphology and optical properties of the as-grown CNPs were determined. Furthermore, the antibacterial activity of such CNPs against four bacterial strains (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) was evaluated using agar well diffusion and optical density measurements. These CNPs were demonstrated to be beneficial for the development of antibacterial drugs and food processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.